Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alan J. Lough, ${ }^{\text {a* }}$ Robert W. Jordan ${ }^{\text {b }}$ and William Tam ${ }^{\text {b }}$

${ }^{\text {a Department }}$ of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and ${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.064$
$w R$ factor $=0.179$
Data-to-parameter ratio $=18.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 4-cyclohexyl-7-(dicyanomethylene)tricyclo[4.2.1.0 ${ }^{2,5}$]non-3-ene-3-carboxylate

The regio- and stereochemistry of the title compound, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$, has been established by X-ray analysis. There are two independent molecules in the asymmetric unit, one of which is disordered.

Comment

Recently, we studied the remote substituent effects on ruthenium-catalysed [2+2]-cycloaddition reactions between 2-substituted 5-norbornenes and unsymmetrically substituted alkynes. Two different regio- and stereoisomers could be formed in the cycloadditions. When the substituent of the norbornene is a dicyanomethylene group, two regioisomers were obtained in a ratio of 15:1. These regioisomers were separated by fractional recystallization. The regio- and stereochemistry of the major isomer, (I), has been established by our single-crystal X-ray diffraction analysis.

(I)

In the structure of (I), there are two molecules in the asymmetric unit, namely A and B (Figs. 1 and 2). In molecule B, atom C15 of the ethoxy group is disordered over three sites. The occupancies of the three disorder sites, named C15B, $\mathrm{C} 15^{*}$ and $\mathrm{C} 15 \$$, are $0.50,0.25$ and 0.25 , respectively (see Fig. 2). The three sites are the result of rotational disorder about the $\mathrm{O} 2 B-\mathrm{C} 14 B$ bond. Torsion angles for $\mathrm{C} 13-\mathrm{O} 2-\mathrm{C} 14-\mathrm{C} 15$, which describes the disorder and contrasts the geometry of the ethoxy group in molecules A and B, are given in Table 1. In addition, there is a slight difference in the orientation of the cyclohexyl group in each of the independent molecules, which is described by the torsion angle $\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 16-\mathrm{C} 17$ (see Table 1).

Experimental

Addition of 2-dicyanomethylene-5-norbornene and ethyl 3-cyclohexylpropiolate to $\mathrm{Cp} * \mathrm{RuCl}(\mathrm{COD})$ in THF at 298 K provided two regioisomers in a ratio of $15: 1$. Fractional recystallization from an ethyl acetate/hexanes (1:4) mixture provided the major regioisomer, (I). Suitable crystals were grown from an ethyl acetate/hexanes (1:4) mixture.

Received 1 October 2003
Accepted 2 October 2003
Online 15 October 2003

Figure 1
View of molecule A of (I), with the crystallographic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
View of molecule B of (I), with the crystallographic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. The minor disorder components are shown with open and dashed bonds.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \\
& M_{r}=336.42 \\
& \text { Triclinic, } P \overline{1} \\
& a=11.6420(10) \AA \\
& b=12.2348(11) \AA \\
& c=13.5739(13) \AA \\
& \alpha=104.761(5)^{\circ} \\
& \beta=90.427(4)^{\circ} \\
& \gamma=93.727(5)^{\circ} \\
& V=1865.1(3) \AA^{\circ}
\end{aligned}
$$

$Z=4$
$D_{x}=1.198 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 16348 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Plate, colourless
$0.35 \times 0.30 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: none 20141 measured reflections 8463 independent reflections 3937 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.180$
$S=0.98$
8463 reflections
456 parameters
H -atom parameters constrained
$R_{\text {int }}=0.100$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-15 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-17 \rightarrow 17$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 13 A-\mathrm{O} 2 A-\mathrm{C} 14 A-\mathrm{C} 15 A$	-87.4 (3)	$\mathrm{C} 13 B-\mathrm{O} 2 B-\mathrm{C} 14 B-\mathrm{C} 15 \-114.0 (8)	
$\mathrm{C} 13 B-\mathrm{O} 2 B-\mathrm{C} 14 B-\mathrm{C} 15 B$	169.6 (4)	$\mathrm{C} 7 A-\mathrm{C} 6 A-\mathrm{C} 16 A-\mathrm{C} 17 A$	-85.1 (3)
$\mathrm{C} 13 B-\mathrm{O} 2 B-\mathrm{C} 14 B-\mathrm{C} 15^{*}$	-159.9 (6)	$\mathrm{C} 7 B-\mathrm{C} 6 B-\mathrm{C} 16 B-\mathrm{C} 17 B$	-66.3 (4)

In the refinement, the bond lengths of the three disorder components $\left(\mathrm{C} 14 B-\mathrm{C} 15 B, \quad \mathrm{C} 14 B-\mathrm{C} 15^{*}\right.$ and $\left.\mathrm{C} 14 B-\mathrm{C} 15 \$\right)$ were constrained to be equal, and the partial occupancy atoms were refined with isotropic displacement parameters. All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.98 to $1.00 \AA$ and included in the refinement in riding-motion approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl $)$ of the carrier atom.

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276,
Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and
R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

